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Abstract 

The conventional interpretation of the spin matrices contained in the Dirac equation for 
the electron is considered to be mostly unintelligible in the operational sense. It is shown 
that it appears that the interpretation is often illogical. The necessity of a more comprehen- 
sible interpretation of the concerned equation is implied. 

I. Introduction 

Pauli's non-relativistic spin matrices were first introduced as analogous to 
operators representing orbital  angular momenta.  Constituting the interaction 
between the electron and an external magnetic field, the matrices were shown 
to yield the anomalous Zeeman effect and the spin-orbit coupling effect. In 
the course of  derivation of  the Dirac equation for the electron, two require- 
ments ,  the first that  the equation must be linear in the operator 3/bt and the 
second that  the equation is covariant under the Lorentz transformation,  lead 
to the introduction of  spin matrices almost uniquely. Our confidence in the 
Dirac equation seems to begin at this point,  and the interpretat ion of  the 
equation has been constructed as to be in accordance with Pauli 's spin theory' 
(Dirac, 1967). Accordingly,  a considerable amount  of  information o f  the spin 
of  the electron has been produced deductively, and one tends to accept i t  as 
physically feasible. It is rather surprising, however, to note that there is no 
direct experimental  confirmation of  i t . t  Only being placed in the Dirac 
equation (or similar wave equations),  spin matrices yield effects such as the 

~- In the theory of metals and in chemistry, spins of electrons play significant roles. 
But those treatments of spins are more or less semi-classical, and are not precisely based 
on the concerned spin theory. 
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anomalous Zeeman effect and the spin-orbit coupling effect, which can be 
compared with relevant experimental results. Are these few and particular 
cases sufficient for confirming the feasibility of the entire spin theory? Are 
we obliged to refrain from searching any other interpretation of the Dirac 
equation, if it tends to conflict with the interpretation made according to the 
conventional spin theory? The present study has been motivated by those 
questions. 

As we shall see in Section 2, it is difficult to derive Heisenberg's equations 
of motion from the Dirac equation for the electron. (Furthermore, there is 
no direct experimental confirmation of the outcome of Heisenberg's equations 
of motion governing spin matrices.) Hence it is emphasized that interpretation 
of spin matrices in the Dirac equation is to be made solely in terms of solutions 
of the Dirac equation itself. In Section 3, the motion of a free electron is 
investigated. In Section 4, we re-examine the well-known demonstration that 
the spin magnetic moment contributes a part of the energy when an electron 
is placed in an electromagnetic field. In Section 5, we re-examine the conven- 
tional statement that two different representations of the same spin observable 
are equivalent when placed in the Dirac equation. 

As noted earlier by Lamb (1969), it is true that almost all expositions of 
quantum mechanics make use of the notion that some kinds of measurements 
are possible. That is to accept a conclusion of the mathematical formalism as 
physically real if it is possible to restate the conclusion in terms of phenomena 
to be manipulated in the physical world. This approach tends to lead us to 
make an unbound extension and animation of a fictitious image of reality, 
particularly when those.conclusions are not completely logically obtained. 

2. The Dirac Equation and Heisenberg's Equations of  Motion 

We write for the Dirac equation for the electron (Dirac, 1967) 

{~(ih ~ /3 t -eAt )  + /3~t.(ihc 3/3r +eA)-mcZ}'~ =O (2.1) 

where r = (x,y,  z), (A, iAt) is a 4-vector potential and e the electronic charge 
(e < 0); the a's and 13 satisfy the following relations: 

O~X 2 = 0 t y 2 = ~ ?  =/32 = l 

~x~y + ay~x = O, ~x/3 +/3ax = 0, etc. (2.2) 

We may represent fi,~t, and • as follows: 



~= 

where 
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(2.3) 

The o's are spin matrices. 
According to (2.3), equation (2.t)  consists of four simultaneous partial 

differential equations. If we interchange a pair of a's in equation (2.1),t we 
obtain a different set of partial differential equations. By solving the two 
sets of equations under the same boundary condition, we may obtain two 
different sets of particular solutions in general. It is conventionally believed, 
however, that the interchange of the pair of a's does not cause any difference 
in the physical implication of equation (2.1). This implies rather clearly that 
significant solutions and interpretations of the Dirac equation made in quantum 
mechanics are expected to be so particular and limited that the evident mathe. 
matical difference between the aforementioned two sets of equations is 
physically insignificant. 

The above observation suggests further that the knowledge of the electron 
provided by the conventional interpretation of the Dirac equation might not 
be precise, if the Dirac equation itself be assumed to be precise for representing 
the behavior of the electron. In quantum mechanics, however, it is customary 
to avoid this criticism by showing that those matrices, apparently time- 
independent in the Dirac equation, vary in time according to Heisenberg's 
equations of motion which are believed to be derivable from the Dirac 
equation. As contrary to the belief, it will be shown in the following that 
Heisenberg's equations of motion are not derivable from the Dirac equation. 

In order to find the connection between the Heisenberg picture and the 
Schr6dinger picture, as is well known (Dirac, 1967), it is necessary to define 
unitary operator T by 

T= exp [ - i  f H(t) dt/h] (2.4) 

t It is necessary to adjust signs so that tr x a = 2it~holds in the vector form. 
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where H(t )  is the Hamiltonian defined in the Schr6dinger picture, or in the 
Dirac equation in this case. An operator v in the Dirac equation yields vt in 
the Heisenberg picture according to 

v t = T - l v T  

Particularly 

H t  = T - 1 H ( t ) T = H ( t )  

(2.5) 

(2.6) 

Then, considering (2.4) and (2.5), we obtain Heisenberg's equation of motion 
for vt: 

ih dv t /d t  = v tH(t  ) - H( t )v  t (2.7) 

In the above derivation of equation (2.7), we notice that operator T can 
be defined only if the state under consideration can be given as a linear super- 
position of eigenstates of H(t). (Otherwise, we cannot define exp ( - i H t / h )  
where H is an operator.) This condition is realized if the energy eigenfunctions 
concerned constitute a complete and orthonormal set. As is shown in the 
Appendix, however, the completeness and the orthonormality are not com- 
patible with respect to the energy eigenfunctions satisfying the Dirac equation. 
Hence the Dirac equation should be interpreted in its own context, without 
Heisenberg's equations of motion being employed. 

The result of the above investigation implies that, if the anisotropy of the 
electron structure is embodied in the Dirac equation, it should be represented 
by the anisotropy of the spin matrices. Indeed, the o's are often regarded as 
constituting a 3-vector (Dirac, 1967). From this point of view, we may regard 
(3~,/3) as a 4-vector and • as a set of scalars, so that the Dirac equation is 
covariant under the rotational transformation (including the Lorentz trans- 
formation) of the coordinate axes. 

3. The Mot ion  o f  a Free Electron 

We assume 

(A,/At) = 0 (3.1) 

in equation (2.1), and consider for the solution of the equation 

~I,~ = a~ exp [ - i ( W e t  - p .  r)/h + iO ~] (~ = 1,2, 3, 4) (3.2) 

where W and p are respectively numbers for energy and momentum. 
For the first case, we assume 

Px ,~ O, Py = Pz = 0 t (3.3) 
0~ =0  J 
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By substituting (3.1), (3.2) and (3.3) in (2.1), we obtain 

Wa 1 - p x a 4  - mca f = 0 (3.4) 

Wa2 - p x  a 3 - rnca2 = 0 (3.5) 

Wa3 - p x a 2  + mca3  = 0 (3.6) 

Wa4 - p x a  i + mca4 = 0 (3.7) 

By solving these, we obtain 
W = +--(m2c 2 +p2)1/2 ( 3 . 8 )  

a l = a 2  = Px W + m c  
(3.9) m .  

a 4 a 3 W -  m e  Px 

The direction in which the component of ~ has the present state for its 
eigenstate is found by considering 

(la x + m e y  + n a z ) ~  = + ~  (3.10) 

where l, m, n are the direction cosines of the concerned direction. On sub- 
stituting (3.2) in (3.10) under condition (3.9), we obtain 

/ = + I ,  r e = n = 0  (3.11) 

and 
~l[t 1 = --- aJt2, a-It 3 = --+ ~It 4 (3.12) 

Under conditions (3.11) and (3.12), if" represents the eigenstate of energy and 
that of ax at the same time. 

Secondly, if we assume, instead of (3.3), 

p y  ~= O, Px = Pz = 0, / (3.13) 
0 4 - 0 1  = 0 2 -  0a =7r/2 t 

we find that • represents the eigenstate of energy and that of oy. Similarly, 
on assuming 

Pz @ 0 ,  Px  = P y  = 0 t (3.14) 
0~=0  ) 

we find that • represents the eigenstate of energy and that of o z. 
Those solutions shown above are well known. Nevertheless, we have 

repeated them in order to conclude that the spin of a free electron has eigen- 
values +hi2  only in the direction of its motion. It is also noted that this is the 
unique case in which the Hamiltonian and a component of spin have eigen- 
values at the same time, as is seen in the following relation: In general, when 
(A, A t) = 0, we have 

a x H  - H a x  = 2 i c p ( a z p y  - aypz )  (3.15) 

and a x commutes with H, if 

pyfft  =pz',I~ = 0 (3.16) 

(In (3.15) and in (3.16), p y  and Pz are operators.) 
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The above conclusion derived from the Dirac equation is conventionally 
accepted as of the electron. If one asks the physical significance of the con- 
clusion, however, the answer is not simple. For example, weconsider the 
following: An eigenstate of az can be regarded as a superposition of the two 
eigenstates of ax (or of ey). Therefore, if there is a way of observing Ox with 
respect to a state which is known to be an eigenstate of oz, the state immediately 
after the measurement will be an eigenstate of ax, according to the theory of 
measurement. According to results of our investigation of the Dirac equation, 
an eigenstate of az is an eigenstate of momentum with the eigenvalue in the 
z-direction, and the eigenstate of a x is an eigenstate of momentum with the 
eigenvalue in the x-direction. Therefore, the measurement of the spin made 
in the above must have changed the momentum also, i.e., the motion of the 
electron, being initially in the z-direction, changes to be in the x-direction. 
When the measurement is made only with respect to the spin angular momen- 
tum, how can the change of the momentum occur without violating the 
momentum conservation law? On the other hand, the measurement of the 
momentum made with respect to the eigenfunction of a component of or, 
e.g. az, must result in a definite value which is in the z-direction, and there 
is no change of the state after the measurement. 

4. A n  Approach  o f  Solving the Dirac Equat ion  

On regarding the Dirac equation as a set of  partial differential equations, 
an approach of solving the Dirac equation may be to reduce the equation to 
a set of  four equations of which each contains only one of the four functions 
~1, ~2,  ~a ,  ~4. The reduction can be done only by increasing the order of 
those differential equations. Then, we should note that a solution of the 
resultant equations does not always satisfy the original Dirac equation. In the 
following, we shall carry out the reduction in such a way that the covariance 
under the Lorentz transformation is preserved in the result. In the process of 
reduction, there will be an opportunity to refer to the well-known demon- 
stration of the existence of the spin magnetic moment. 

By writing Pt  for ih  3 /3 t  and Px for - i h e  3 /~x ,  etc., we have for equation 
(2.1) 

(~(Pt  - e A t )  - ~ t .  (p - eA) - m c 2 ) T  = 0 (4.1) 

According to the investigation made in Section 2, we regard 

(/3~ i/3) (4.2) 

as a four-vector and ',I, as a scalar. Then, equation (4. t)  is covariant under 
the Lorentz transformation. We consider operator 

D1 = ~(Pt - e A t )  - riot.(p -- eA) + me 2 (4.3) 

which is also covariant under the Lorentz transformation. On operating (4.3) 
on (4.1) from the left-hand side, we obtain 

((Pt - e a t )  2 - (P - c A )  2 - m2e4  + e h c ~ . H  - iehc=. E}~ = 0 (4.4) 
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where H = curl A and E = - ~ A / a  (ct) - grad A t. In view of the process of 
derivation, equation (4.4) is covariant under the Lorentz transformation. 

Noting that 

( a .  H - i~ .E)  2 = H  2 - E  2 - 2ipE .H, etc. 

we may reduce equation (4.4) further, by repeating similar treatments, to 
equations in which matrices a,  ~, p remain only by being multiplied by higher- 
order derivatives of At, A. It is difficult to eliminate those matrices completely 
from the resultant equation. Only by ignoring derivatives of A t  and A of some 
higher orders, may we do so. On assuming that E and H are independent of  t 
and r, and E ± H, we operate 

D 2  = ( P t  - e A t )  2 - (P - eA) z - m 2 c 4  - (ehcg.  H - iel~c ct. E) 

from the left-hand side of (4.4), and obtain 

{[(Pt -- eAt) 2 - (P - eA) 2 - - / T / 2 C 4 ]  2 - -  e2h2c2(H 2 - E2))~ = 0 (4.5) 

We note the following: (a) Each component of ~ satisfies the same partial 
differential equation. (b) I f  we write for the Dirac equation (2.1) 

DoqZ=O 

then we may write for equation (4.5) 

D2D1Do~g = 0 (4.5') 

Noting thatD2 and DID O commute mutually, and D1 and Do commute 
mutually, we may write for (4.5') 

DoDID2XP = 0 (4.5") 

If  solution 'Is of  the last equation is known to be ~I '(2) then 

~(o) = D 1D 2 ~(2)  (4.6) 

is a solution of the original Dirac equation (2.1). The four components of 
~(2) are mutually identical. But the four components of ~(o) are not so. Also 
noted is that if ~(2) is isotropic, ~(o) is not necessarily so. 

If • in (4.4) is assumed to be an energy eigenstate, we may substitute W 
for Pt. With respect to this resultant equation, it is often suggested that 
ehc a.  H implies the existence of the spin magnetic moment. But this 
interpretation seems to be premature: In this equation, not only a but also 
aand  p are operators. Furthermore A and A t are functions of time and spatial 
coordinates in general. There is no way to evaluate the eigenvalue of an 
operator contained in the equation as isolated from the other operators con- 
rained in the same equation. For the same reason, it is also premature to con- 
clude that there is no contribution of energy from iehc~. E. Indeed, equation 
(4.4) cannot be covariant under the Lorentz transformation if the equation 
does not carry this term of E. Rather the existence of this term of E suggests 
that the usual interpretation of ehc t~. H is overly spontaneous. 
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If • is an eigenfunction of (Pt -- e a t ) ,  then we may have 

(lOt -- eAt)  2 ~  = [(P - eA) 2 + m2c4 - ehc or. H] 

But the difficulty of interpreting ehc 4. H as isolated from the other operator 
remains as before. 

5. Equivalency Be tween  Two Representat ions o f  the Spin 

In interpretation of the Dirac equation, one often states that the choice of 
representation of matrices (~t, t3) does not affect the validity of  the equation, 
as long as they satisfy conditions (2.2). First we write for the Dirac equation 

((lOt - eA t )  - ax(Px - eAx )  - ay(py  - eAy )  - az(Pz - eAz)  

--  fl/T/C2)X~ (1) = 0 ( 5 . 1 )  

We may replace (ax, ay, az), for instance, with (ax, az, - a y )  obtaining 

{(I°t - eA t )  - ax(Px - e A x )  - az(py  - eAy)  + ay(pz  - eAz )  

-/3mc2}~ (2) = 0 (5.2) 

Equation (5.2) is believed to be equivalent to equation (5.1). 
Suppose that by solving (5.1) under a certain boundary condition we obtain 

W for an eigenvalue o f p t .  If equation (5.2) under the same boundary condition 
has the same energy eigenvalue W and the same eigenfunction 

,~(2) = ,1,(1) (5 .3)  

then we have from (5.1) and (5.2) 

[(ay - az ) (py  -- eAy)  + (az + ay)(pz  - e A z ) ] ~  (1) = 0 (5.4) 

In general, one would not expect such a symmetry as (5.4) in ~(1~. The 
quantum-mechanical equivalence does not necessarily require condition (5.3). 
Instead, it is required that 

XI/(1) *xI1(I) = xls(2)*xls(2) 
~,O).otg,(a) = ~ ( 2 ) . ~ ( 2 )  (5.5) 

Suppose that W is an eigenvalue o f p t  with respect to (5.1). By substituting 
the same value W for Pt  in (5.2), we obtain a set of four partial differential 
equations. Further we suppose that we are able to solve the equations 
obtaining ,t,(2). Those two sets of solutions, ~(1) and ~(2), are now required 
to satisfy (5.5). We notice that those solutions are functionals of (A, A t )  
which may be given arbitrarily. In order to assure the equivalence between 
(5.1) and (5.2), one has to prove that condition (5.5) is always satisfied if 
(A, A t )  are chosen arbitrarily. This proof has never been given and is most 
unlikely to be possible. In the case of a free electron discussed in Section 3, 
the proof is easily given. As the field becomes stronger and more complex, 
the two equations may not be equivalent. Under what condition of the field, 
do they cease to be equivalent? We do not know. 

In the theory of the anomalous Zeeman effect, and also of the spin-orbit 
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coupling, it is customary to take the component of  the spin operator in the 
direction of the concerned magnetic field as diagonal. See Rose (1961), 
Section 30. In view of the remarkable success of the theory, we may say at 
least that the above relation between the spin matrices and the magnetic field 
is feasible in this case. Then it may be of interest to investigate the anomalous 
Zeeman as based on the Dirac equation in which the component of the spin 
operator in the z-direction is diagonal and the magnetic field is in the y- 
direction. (Even when this Dirac equation happens to produce the same 
result as before, there is no assurance that these two Dirac equations are 
equivalent in cases of more complex external fields, of course.) 

What we need to prove is the equivalence rather than the inequivalence. 
In view of (5.4), we may say at least that the proof can be positive only under 
some restrictive conditions. And, against the ordinary belief, one has to 
recognize that the Dirac equation in a representation of the spin operator is 
not equivalent to the Dirac equation in another representation of the same 
spin observable. 

6. Conclusion 

1. Heisenberg's equations of motion are not derivable from the Dirac 
equation for the electron. Hence, the Dirac equation must be interpreted in 
terms of its own solutions. 

2. A set of spin matrices separated alone from the other operators may be 
evaluated according to the conventional spin theory. But the result is often 
operationally untenable. 

3. I f  the anisotropy of the electron structure is embodied in the Dirac 
equation, the anisotropy must be represented by the anisotropy of the spin 
matrices. From this point of view, (j3~x, ij3) must constitute a 4-vector. Then 
'It is a 4-component scalar. 

4. In general the Dirac equation given in a representation of the spin 
observable is not equivalent to the Dirac equation given in another representa- 
tion of the same observable, even though the equivalency for the purpose of 
evaluating energy eigenvalues may exist as depending on the characteristics of  
the external field exerted on the concerned electron. The known success of the 
Dirac equation in yielding the anomalous Zeeman effect and the spin-orbit 
coupling effect does not seem to provide a proof of the overall feasibility of  
the conventional interpretation of the equation. 

Appendix 
Incompatibility Between the Completeness and the Orthonormality of  a set 

o f  Multi-Component Wavefunctions (Spinors) 

In this appendix, we shall demonstrate that the orthonormality condition 
considered for a set of energy eigenfunctions satisfying the Dirac equation for 
the electron is not compatible with the conventional completeness relation of 
the same set. The difficulty arises from the fact that each state satisfying the 
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Dirac equation consists of more than one function. For the sake of simplicity, 
therefore, we suppose that each state consists of two functions, instead of 
four, in this Appendix. 

A set of two-component functions 

g,(i)( , ~(i)( (A.1) • (i)(X)=( a X) 2 X)) i = 1 , 2 , . . . , n  

is supposed to satisfy the orthonormality condition 

2 

~ Tq)*(x)Tg)(x)  dX = 5ii (A.2) 
Cr=I 

Taking an arbitrary two-component function 

F(X) = (Fa (X), F2(X)) 

we anticipate that it is possible for F to be given by 

Fa(X) = ~. a(i)T~ ) (a = 1,2) 
i 

where a q) is determined by 

2 

a(i)= 2 f F(~(X)T(~)*(X) dx  
cr=l 

(A.3) 

(A .4) 

(A.S) 

In order to see the validity of (A.4), we first derive from (A.4) 

f F~(X)T~ )*(X) dX = ~ f aq)~Pq)(x)~(~)*(X) dX 
J 

(A.5) being substituted in the right hand side, 

=~, ~ [. Fo(X')q~(~)*(X')dX' f ~Oj)(X)~(~')*(X)dX (A.6) 
] o 

The validity of (A.6) is assured, if there is a relation 

E ~I'oq)*(X')~q)(x) = 5o(73(X - X') (A.7) 
/ 

If F is a particular function chosen specifically, relation (A.6) might be valid, 
without relying on (A.7). If the choice o f F  is arbitrary, relation (A.7) is not 
only sufficient but also necessary; the relation is conventionally called the 
completeness relation (e.g., Rose, 1961, page 93). 

In the following, we shall demonstrate that relation (A.7) is not compatible 
with the orthonormality condition (A.2). From (A.7), we have 

2 qg(/)*(X')"Is(1])(X) = 8(X - X')  (A.8) 
i 
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On operating fF I (X '  ) dX' on both sides of (A.8), we have 

f FI(X' ) Y. ~O*(X')~(0(X) dX' = f FI(X')6(X - X') dX' 
i 
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Or 

~. bq)*(O(X) = FI(X) (A.9) 
l 

where 

b{ ° = f FI(x)~)*(X) dX (A.m0) 
Relations (A.9) and (A.10) imply that the ~O's  constitute a complete set of 
orthonormal one-component functions. (Here again, we should note that 
F(X) is not a particular function chosen specifically.) Similarly we have 

E b(~)*(~)(X) = F2(X) (A,9') 
i 

with 

b(~ ) = f F2(X)~(~)*(X) dX (A.IO') 

By comparing (A.9) and (A.9') with (A.4), we see that 

bf)= by)= a(') 
must be satisfied. But definition (A.5) requires that 

b(1 i) + by ) =a ft) 

Relation (A.11) is not compatible with relation (A. 12). 

(A.11) 

(A.12) 
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